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The statistical representation of a fluctuating (stochastic) magnetic field configuration is studied in de-
tail. The Eulerian correlation functions of the magnetic field are determined, taking into account all
geometrical constraints: these objects form a nondiagonal matrix. The Lagrangian correlations, within
the reasonable Corrsin approximation, are reduced to a single scalar function, determined by an integral
equation. The mean square perpendicular deviation of a geometrical point moving along a perturbed
field line is determined by a nonlinear second-order differential equation. The separation of neighboring
field lines in a stochastic magnetic field is studied. We find exponentiation lengths of both signs describ-
ing, in particular, a decay (on the average) of any initial anisotropy. The vanishing sum of these ex-
ponentiation lengths ensures the existence of an invariant which was overlooked in previous works.
Next, the separation of a particle’s trajectory from the magnetic field line to which it was initially at-
tached is studied by a similar method. Here too an initial phase of exponential separation appears. As-
suming the existence of a final diffusive phase, anomalous diffusion coefficients are found for both weakly
and strongly collisional limits. The latter is identical to the well known Rechester-Rosenbluth
coefficient, which is obtained here by a more quantitative (though not entirely deductive) treatment than

in earlier works.

PACS number(s): 52.25.Fi, 05.40.+], 52.25.Gj, 52.35.Ra

I. INTRODUCTION

The problem of transport of particles and energy in a
magnetically confined plasma, in a region where the mag-
netic field is completely stochastic, is of major impor-
tance in the problem of controlled fusion [1], as well as in
other fields of plasma physics. This matter has been the
object of many previous studies (see, especially, Refs.
[2-27]), but has not yet yielded a final answer, because it
is a quite complex nonlinear problem. We intend to de-
vote a series of papers to an alternative approach to this
question.

In order to concentrate on the statistical aspects of the
problem, we consider an extremely simple geometry. The
main magnetic field is supposed to be straight, homogene-
ous, and stationary. It therefore fixes a privileged direc-
tion, which is taken as the z axis of a Cartesian reference
frame. It might be objected that this shearless slab
geometry is not very realistic when applied to a fusion de-
vice such as the tokamak; previous authors have studied
the problem in sheared slab [3,4,8,11,12,14,15,21], cylin-
drical [2,5,9,12,22,26], or toroidal [20] geometries. Al-
though the presence of shear is important for the emer-
gence of chaos mechanism through tearing modes, it ap-
pears that in a completely chaotic situation its role is no
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longer essential. It is noteworthy that the classical for-
mulas for the diffusion coefficient, as derived, e.g., by Re-
chester and Rosenbluth [5] by using a cylindrical
geometry, do not depend on the inhomogeneity or the
shear of the unperturbed magnetic field. We thus decided
to radically simplify the geometrical aspects of the prob-
lem (as in Refs. [7,10,17-19,25,27]) and to consider the
influence of the geometry in forthcoming work.

The anomalous transport is due to a superposition of
three stochastic processes. In the first place we must con-
sider the ubiquitous collisions producing random veloci-
ties in the parallel and in the perpendicular directions,
which, if they were alone, would determine the well
known classical transport phenomena [28]. The magnetic
field, on the other hand, is supposed to contain a fluctuat-
ing component, perpendicular to the main field, due to
internal instabilities or to irregularities in the external
coils (“braided field”). The total magnetic field in such a
stochastic layer must be described statistically. The mag-
netic field lines are no longer deterministic in this case.
Their behavior must rather be described as a spatial
diffusion in the x-y plane. The motion of the particles
along this perturbed, diffusing field combined with the
collisions that may decorrelate them from the magnetic
field eventually yields enhanced, anomalous transport.

The first step in any theory of magnetic fluctuations is
the statistical definition of the magnetic field, which is
considered as a random variable. In all papers (except
Ref. [8]) the magnetic field is assumed to be statistically
prescribed a priori as a Gaussian colored process; the
retroaction of the plasma on the field is not considered.
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Such a simplified picture can be justified by the great
difficulty of a fully self-consistent theory. A complete
specification of a Gaussian process requires a definition of
the correlation functions of the magnetic field evaluated
at two fixed points in space, i.e., the Eulerian correlation
functions. In most works [5-7,9-11,13,14,19-26] the
form of the fluctuation spectrum is not explicitly
specified; the fluctuations are characterized solely by
their intensity and the characteristic length scales in the
directions parallel and perpendicular to the main field.
To the best of our knowledge, an explicit definition is
given only in Refs. [12,17,18]; it will be shown in Sec. II
that the definitions of Refs. [14,15,17,18] are inconsistent
with the existing physical constraints.

The form and properties of the various moments of a
random vector field (including the condition of zero
divergence) are discussed in most texts on fluid tur-
bulence theory. The general form of the Eulerian corre-
lation tensor for the present problem has been derived in
detail by Coronado, Vitela, and Akcasu [19]. Specifying
in their results the form of the autocorrelation functions,
we derive in Sec. II explicit formulas for the Eulerian
correlation functions of the magnetic field and of the gra-
dient of this field.

In the study of the diffusion process, the central quanti-
ty is the mean square deviation (MSD) of the position of a
point (or a particle) averaged over the ensemble of reali-
zations of the random variable. This quantity, in turn, is
determined by the Lagrangian correlation function of the
fluctuating magnetic field. In this correlation function
the field is no longer evaluated at two fixed points, but
rather at two successive positions along an orbit in a
given realization, averaged over these realizations. The
Lagrangian correlations are quite complex objects, as is
well known also in fluid turbulence theory [29,30], be-
cause they require the solution of the equations of
motion, a problem that is usually impossible. Their eval-
uation requires reasonable approximations, such as the
well known Corrsin approximation [30,31]. The La-
grangian correlations of the magnetic fluctuations are dis-
cussed in Sec. III. It is shown that, within the Corrsin
framework, all these correlations are determined by a sin-
gle scalar function, which obeys an elegant integral equa-
tion. The latter can be solved exactly in a certain limit
and numerically in general.

Section IV is devoted to the study of the spatial
diffusion of magnetic field lines. A second-order non-
linear differential equation is derived for the MSD. From
its solution, the diffusion coefficient of the magnetic field
lines can be derived. The equation can be solved analyti-
cally in two extreme cases (quasilinear and percolation
limits). Although a well known result is recovered in the
latter limit, it is shown that this result is illusory because
the differential equation is not valid in the region of large
perturbation; the correct behavior must be obtained by
other methods.

In Sec. V we study the relative motion of the field lines.
Instead of considering the displacement of a real field line
with respect to an (abstract) average line, we consider
here initially (§=0) two neighboring magnetic field lines
and study their relative distance along . (Here &
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represents the z coordinate running along the straight un-
perturbed magnetic field and playing the role of time in
this purely geometrical problem.) The result is qualita-
tively well known: the relative separation grows ex-
ponentially with £ (in at least one direction), a signature
of a chaotic system. The characteristic length scales as-
sociated with this process are the (spatial) Lyapounov ex-
ponents (or exponentiation lengths). Though there have
been three previous detailed studies of this problem
[11,12,14], the results of Refs. [11,14] were not correct
because they did not take properly into account the
geometrical constraints in calculating the Eulerian corre-
lation functions of the magnetic field lines.

In Sec. VI we introduce charged particles into this fluc-
tuating magnetic field configuration. These particles are
constituents of a plasma; in other words, they are not
considered as isolated. Rather, they move under the
combined action of the stochastic magnetic field and of
their mutual collisions. The effect of the latter is modeled
here as a random component of the velocity and the
global evolution is described by a stochastic equation of
motion. The philosophy of this model has been discussed
in great detail in our previous paper [27], where we used
the terminology ‘“V-Langevin equation” for the latter
equation and studied a particular (subdiffusive) case of
this problem.

Here we consider the general case, in which
b=b(x,y,z). In a pioneering paper, Rechester and
Rosenbluth [5] showed that in this case the particles
behave diffusively, i.e., their mean square displacement is
asymptotically proportional to time. The treatment in
Ref. [S] was, however, semiphenomenological. None of
the subsequent authors working on this problem
[11,14,18,23] succeeded in obtaining a rigorous derivation
of the Rechester-Rosenbluth (RR) diffusion coefficient
from first principles. An exception is the paper of Laval
[21], who gave an analytic treatment leading (in particu-
lar in his Eq. 42) to a result very similar to the RR
diffusion coefficient. He used, however, an idealized
model for the magnetic field whose relation to a real
configuration is very hard to evaluate. We do not claim
to present a rigorous proof of the RR result; we believe,
however, that the point of view adopted here sheds light
on this problem. Instead of considering the deviation of
the particle trajectory from its average, we study a prob-
lem analogous to the one of Sec. V. In the latter we com-
puted the relative separation of two field lines; here we
calculate, as a function of time, the relative distance be-
tween a physical particle trajectory and the field line on
which it started at time zero. This way of treating the
problem clarifies the mechanism of decorrelation of the
particles from the field lines. It appears, in particular,
that a perpendicular collisional diffusion coefficient, al-
though very small compared to the parallel one in a very
strong magnetic field, plays the role of a necessary “seed”
in order to produce the decorrelation that finally leads to
a strongly enhanced anomalous diffusion coefficient. This
conclusion was also reached in a rather different way by
Rechester and Rosenbluth [5], Isichenko [14], and Laval
[21]. It may be added that an alternative mechanism of
decorrelation is provided by the perpendicular drift
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motions, which were neglected here. Coronado, Vitela,
and Akcasu [19] formulated this problem, but did not
derive explicit expressions for the contribution of this
effect to the anomalous diffusion coefficient. We extend-
ed our methods to cover this problem and will present
the results in a forthcoming paper.

II. KINEMATICS
OF THE MAGNETIC FLUCTUATIONS

The magnetic field considered in the present paper con-
sists of a strong constant field B, directed (conventional-
ly) along the z axis of a Cartesian reference frame
[x=(x,py,z), x, =(x,y)] and a small perturbating field
perpendicular to the former:

B(x)=By[e,+b,(x)e,+b,(x)e,] . )

(In the present paper the definitions of ‘“parallel” and
“perpendicular” directions refer to the unperturbed field
direction e,.) In contrast with most papers quoted in Sec.
I, our unperturbed field has no shear. The present shear-
less slab model has the advantage of simplicity and does
not lack any essential ingredient for understanding a pos-
sible (though not the only possible) mechanism of anoma-
lous transport. As explained in Ref. [19], this idealiza-
tion is not too bad whenever the correlation lengths are
much smaller than the characteristic plasma dimensions:
the phenomena can then be described locally. (A formu-
lation valid in a very general geometry was given in Ref.
[12].) Clearly, the magnetic field must obey the con-
straint of zero divergence: V:-B(x)=0. In order to au-
tomatically satisfy this constraint, we represent the per-
turbing field in terms of a vector potential a(x) having
only a z component:

a(x)=1y(x)e,, b(x)=VXa(x). (2)

For any field C(x) we define its Fourier transform C (k)
by

C(x)= [dke**C(k) . (3)

We now state that the perturbing magnetic field b(x)
is a random quantity that has to be defined statistically.
In order to cope with the zero-divergence constraint, we
introduce the primary definition at the level of the poten-
tial ¥(x): this quantity is assumed to be a Gaussian ran-
dom function, which is supposed to be spatially homo-
geneous and gyrotropic [i.e., isotropic in the plane per-
pendicular to the reference magnetic field]. In this case,
the Eulerian potential autocorrelation function has the
form

Ar)={P(x +r)p(x)) ={P(r)Y0)) =A(r,r,), @

where the scalar function A(r) depends only on the
length of the perpendicular component of the relative dis-
tance r, =V rf+rf and on the z component r,. We
stress the attribute ‘“‘Eulerian,” meaning that the correla-
tion is evaluated at two fixed points x +r,x in physical
space. In the Fourier representation, we introduce the
potential spectral density or, briefly, the potential spec-
trum:
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(PP =AK)S(k +kV=A (K, k )8k +K')
5)

where k, =V k2+k2, k,=k,.

We now consider the four possible correlation func-
tions of the magnetic field components in the Fourier rep-
resentation b,,(k ), m =x,y, which form a 2 X2 matrix:

(b,,(k)b,(k"))=B,,,(k)8(k+k'), (6)
with
Bm,,(k)=(kf8mn—kmkn).>4(k) . (7)

From these expressions, we can easily derive the Eulerian
correlations

Bun(1)=b,,(r)b,(0))= [dk e™* "B, (k). (8

These quantities can be easily expressed explicitly in
terms of the potential spectrum. We do not give here the
detailed derivation of this result, which was discussed in
detail in Ref. [19]:

ﬁmn(r)zgl(rl)smn+42(r1)(rf8mn—rmrn) . (9)

Here &,,&, are functions of r, that can be calculated ex-
plicitly in terms of the potential spectrum A (k). Equa-
tion (9) represents the general form of the homogeneous,
gyrotropic Eulerian correlation function for a solenoidal
(divergence-free) fluctuating, two-dimensional vector
field. No assumption has been made about any specific
form of the potential spectrum A (k). It should be noted,
in particular, that the correlation tensor is, in general,
nondiagonal: the integral &, is nonzero in most of the
relevant situations (see below). This is in contradistinc-
tion to the assumptions often found in the literature
[14-18].

We now make the model more specific by introducing
an assumption about the form of the potential spectrum
(a similar assumption can be found explicitly in Ref. [18]):

A(k)=2m) A A{B%exp(— ATk — 1A2k1) . (10)

The corresponding correlation function in physical space
is

A(r)=FA2 e _ (11)
Sl BT RPTY

The potential spectrum thus depends on two charac-
teristic lengths: the parallel correlation length A, and the
perpendicular correlation length A; the dimensionless
parameter 8 is a measure of the intensity of the fluctua-
tions. With assumption (10) the functions &, of Eq. (9)
can be calculated rather easily, with the following result
for the magnetic field correlation tensor:

2 —
rLamn "'mn }

$mn(r )=B2 [smn - }\'i

Xex _rzz —i m,n=x,y . (12)
P aab 2 T T
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Explicit expressions can also be obtained for the Eu-
lerian correlations of gradients of the magnetic field
(these quantities will be needed hereafter). Introducing
the abbreviation b, ,(x)=V, b, (x), m,a=x,y, we
define the following correlation tensors (of fourth rank):

B (r)=(b,, (x+r)b, s(x)) . (13)

Using the Fourier transforms of the fluctuating field we
find

BB (r)= [ dk ™"k k5B, (k) . (14)

The result is easily obtained from Egs. (7) and (10). We
do not list here the explicit formulas, but mention that
this tensor turns out to possess five independent com-
ponents B (r), BY(r), Bij(r), BL(r), and BJ(r) (i.e.,
these components have different functional dependence
on r); every other component of the tensor equals + one
of these, due to the symmetries B (r)=85%(r)
=B (r)=B%(r).

We now compare these results with those appearing in
the literature. The most explicit presentation of this
matter is found in Ref. [14]; Isichenko (IS) assumes the
following form:

B (r,)=8,n80pf am(r;) (IS) . (15)

When the b, component is zero (as in our case) his as-
sumption is [Eq. (11) of Ref. [14], translated into our no-
tation]

w A
f dzfam(z)zZsz—g Va, m=x,y (IS). (16)
w 2

This result is obtained by a purely dimensional argument,
from the mere existence of two characteristic scale
lengths. The same assumption appears in Ref. [11]. The
main difference between our result (14) and Eqgs. (15) and
(16) is that the latter correlation function B2 depends
solely on r, instead of being a function of both r, and r,.
In order to obtain Isichenko’s r, -independent result, we
must admit (as stated by him) that the magnetic field
correlation is “insensitive to the transverse correlation
length” A,: this is the case when A|— . Thus the im-
plicit approximation admitted by Isichenko [14] and by
the other authors quoted is A;/A; <<1. In this approxi-
mation the magnetic fluctuation problem is enormously
simplified; this case was treated in great detail in Ref. [27]
(see also the discussions in the forthcoming sections).
Many important features related to the specific nonlinear-
ity of the problem are, however, wiped out in this approx-
imation. Its discussion is therefore not very useful for a
general, realistic situation.

If we admitted Isichenko’s approximation A, — oo, we
should neglect r, /A, in all correlation functions; the Eu-
lerian magnetic field correlation (12) becomes

Boun (1, ) =B(r,)8,,, =Bexp
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In this limit (and only in this limit) the Eulerian field
correlation tensor becomes diagonal. In order to calcu-
late the correlation of the gradients, one must first calcu-
late the exact expressions (14) and then take the limit
r, /A <<1, with the result

B (r, ) =B (r,)=1BE(r,)

=1B(r,)=—BY(r,)

for M «<1 (18)
Ay )

Hence, even in this limiting case, the result is different
from Isichenko’s. In the first place, the functions f,,,(7,)
in Eq. (15) are different for different indices; more impor-
tant, there exists a nondiagonal coefficient B (r,).
Indeed, {b,,b,,.)=—(b,,b,,) (because V-b=0 and
b, =0); hence B3 70 implies B;370. Note that nondiag-
onal components of this tensor were considered in Ref.
[12]. We thus see that in all cases one must correctly

take into account the constraint of zero divergence.

III. LAGRANGIAN CORRELATION FUNCTIONS

In Sec. II we discussed the Eulerian correlation func-
tions of the magnetic fluctuations. In the evolution and
transport problems that constitute our main objective,
another type of correlation functions plays a major role.
We introduce the latter at two levels.

We first consider a field line representing the (given)
magnetic field as a purely geometric object. It is a curve
in three-dimensional space, represented by the following
equations [see Eq. (1)]: dx /(Byb,)=dy /(Byb,)=dz /B,.
We take z as an independent variable (playing the same
role as the time in a dynamical problem) and denote it by
the greek letter { in order to stress its distinct role; we
then obtain

izcd—(gél=bx(x(§),y(§),§) :
(19)
gy?(;él=by(x(§),y(§),§) .

Similar equations valid for a general geometry of the un-
perturbed field were derived in Ref. [12].

When these equations are combined with Egs. (2), one
clearly sees that they have a Hamiltonian structure, with
(x,y) playing the role of (q,p), and with a {-dependent
(i.e., time-dependent) Hamiltonian, ¥(x,y;{). The sys-
tem is therefore nonautonomous, hence, in general,
nonintegrable [ 11 degrees of freedom]. Two limiting sit-
uations are, however, solvable. When b(&) only depends
on &, the equations are trivially simple: this case has been
thoroughly discussed in Ref. [27]. When b(x,y) is in-
dependent (explicitly) of §, we have an integrable, au-
tonomous one-degree-of-freedom system.

Writing x  (§)=(x(§),y(§)), we integrate Eq. (19):

8x,(6)= [fdgib(x,(£,6)) 0)
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where we introduced the deviation &x (&) defined as fol-
lows:

8x,(8)=x,(5)—<{x,(£))=x,(£)—x,(0) . 21

From the solution (20) we deduce the MSD in the x
direction, at “‘time” &:

L©=(ex) = [Fdg, [ Fderl o (61,6)
=2 [(aB6—DL (D) . (22)

The integrand is the (xx) component of the Lagrang-
ian correlation tensor of the magnetic field fluctuations:
it is an ensemble average of the product of fluctuating
fields evaluated at the instantaneous positions x (&) at
two different “times” §,,§, (rather than at fixed spatial
positions x |,z as in the Eulerian correlations):

’Lmn(§1+§)§l)
= (b, (%, (51 +8),6,+6)b,(x,(£1),61))
=(b,,(x,(£),6)b,(x,(0),0)) =L, (£) . (23)

The second equality follows from a theorem of Lumley
[32] (see also Ref. [30]): when the Eulerian correlation
function of the fluctuating field is homogeneous and sta-
tionary, the Lagrangian correlation is stationary (i.e., de-
pends only on the difference of the two times).

Lagrangian correlations are much more complicated
mathematical objects than Eulerian correlations: this is
well known in the context of fluid turbulence theory (an
excellent recent discussion can be found in Chap. 12 of
Ref. [30]). The reason is easily understood: one needs
the solution of the equations of motion (19) for its calcu-
lation.

It is customary in turbulence theory to use an approxi-
mation procedure due to Corrsin [31] (see also an excel-
lent presentation in Ref. [30]). It has been shown by
Weinstock [33] that the Corrsin approximation is the
leading term in a systematic expansion and that the
corrections to it are uniformly small if B> << 1. We adapt-
ed Weinstock’s argument to our present problem and
confirmed his conclusion (we do not publish here these
very lengthy, but straightforward calculations). Further-
more, for a different but related problem [34], the conse-
quences of the Corrsin approximation were checked by a
numerical simulation [35].

In order to explain the Corrsin approximation, we
write the Lagrangian correlation function as

Lmn(§)=fd?l(b,,,(?l,g)b,,(xl(O),O)S(?l—xl(é'))) .

(24)

Corrsin assumes that, at least in some asymptotic sense,
the exact propagator 8(?, —x,(£)) can be approximated
by its ensemble average, which then leads to a factoriza-
tion of the integrand in Eq. (24), as follows:

L &)= [ (b, (?,6)b,(x,(0),0))(?, —x,(£)))
= [dr (b, (r,,£)b,(0,0))(8(2,—8x,(£)) ,
(25)
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where r; =7 —x,(0) and the notation
=x,(£)—x,(0) was introduced.

The Corrsin approximation amounts to establishing a
functional relationship between the Lagrangian and the

corresponding Eulerian correlation functions, in the form
Loy (&)= [driy(r,O)B(r,6) (26)

where B,,,(r,0)=8B,,,(r,,r,,6) is the Eulerian field
correlation, defined in Eq. (8) (with r,—¢). The function
y(r;,§) can be interpreted in this context as the probabil-
ity of finding the current point on a field line at the per-
pendicular position r, at “time” §, starting from x,(0) at
“time” 0. It can be represented as

Y(fl,é'):(S(rl—le(é')))
=fdkleikl-rl<e—ikl~8xl> ) Q7

6x (&)

It is easily shown that, as a result of the homogeneity
and gyrotropy of the Eulerian potential correlations, the
probability density has the property y(r,,{)=y(r,£).
Using this symmetry and Eq. (9) for the Eulerian correla-
tions in Eq. (26), the following form is obtained for the
Lagrangian correlations:

L (§)=8,,,L(E) . (28)

An explicit proof of this important property is given in
the Appendix. In conclusion, we have shown that, for a
homogeneous, stationary, and gyrotropic state, the La-
grangian correlation matrix is of the form (28), which is
proportional to the unit matrix, with a single independent
coefficient .£L(§).

We now return to Eq. (27) and evaluate the average in
the second cumulant approximation, with the MSD given
by Eq. (22). Equation (28) is used and the k, integral is
performed, with the result

y(r, 6= :
U am [Rdg 6L

ri

B 4f0§d§,(§—§1 \L(E)

X exp (29)

After introducing this expression into Eq. (26) and per-
forming the space integral, we obtain an equation for
L(§):

M
;.
(A2 [fag,e—¢0L0,)
(30)

L(§)=Pexp

&
247

This is the basic integral equation obeyed by the La-
grangian correlation of the magnetic field fluctuations.
Thus, even in the Corrsin approximation, the determina-
tion of the Lagrangian correlation requires the solution of
a nonlinear integral equation, which cannot be obtained
analytically.

It is interesting to note that in the limit A, — o, Eq.
(30) simplifies considerably: it becomes an explicit ex-
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FIG. 1. Reduced Lagrangian correlation of magnetic field
fluctuations. The curves have been obtained by numerical solu-
tion of Eq. (33). (a) =2, (b) =1, (c) a= 3, and (d) a=0.

pression of £(§). Comparing it with Eq. (17) we see that
in this limit the Lagrangian correlation equals the Euleri-
an correlation:

£

L(&)=p%exp
2%

=B(£), A— oo . (31)

For finite values of A; Eq. (30) can be solved numerical-
ly. It is useful to introduce the dimensionless quantities

ozzﬁi\L

. " L(1)=B 2L\ T) . 32)

The integral equation for £(7) depends on the single pa-
rameter a,

e—#n

L (33)

T): 7
2 T — al
[1+2a fod’rl(’r TI)L(TI)

The numerical solutions of this equation for various
values of a are shown in Fig. 1. The Lagrangian correla-
tion function will play a very important role in the theory
of the magnetic line diffusion to be treated in the next
section. '

IV. MAGNETIC LINE DIFFUSION

As a result of the stochastic nature of the magnetic
field, the field lines will (presumably) exhibit a diffusive
behavior. We consider a representative (geometric) point
on a (perturbed) field line starting at =0 on the average
field line, i.e., 6x(0)=38y(0)=0 [the notation 8x(§) was
defined in Eq. (21)]. As we advance in the positive §
direction, the representative point performs a random
walk around the average line, according to Eq. (19). If
the behavior is purely diffusive, the MSD I'({), defined in
Eq. (22), behaves asymptotically (for large {) as a linear
function [5-7,11,14,15,27]:

I(£)=2D, ¢, (— o, 34)

where the constant D,, will be called the magnetic line
diffusion coefficient: it has the dimension of a length.
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More generally we define, for all values of &, a running
diffusion coefficient [27] as follows:

—1d
D, (&)=7 dgl“(é), (35)
with the property
fim D,,(£)=D,, . (36)

If the behavior is diffusive, this constant is finite and
different from zero.

It should be stated at this point that, in general, the
MSD I'({) cannot be determined separately; rather, its
defining equation couples it to the two other moments
(8y%(&)) and (8x(&)8y(&)). It is shown, however, in
the Appendix that under the conditions of stationarity,
homogeneity, and gyrotropy, the MSD tensor reduces to
a multiple of the unit tensor, whose only nonvanishing
component is I'(§). The MSD I'(§) is simply related to
the Lagrangian correlation of the magnetic fluctuations,
through Eq. (22), from which it is easily found that

D, (§)= [(d&Lig) . (37)

We now note that the integral equation (30) for the La-
grangian correlation function can be converted into an
equation for the MSD. From Egs. (35) and (37) we find
the obvious relation d*T'(£)/d £?=2.L(£); hence Eq. (30)
is rewritten as

2 2 A4
d F(z ) =2[3‘2exp *% zilz . (38)
d¢ 242 | A3+ T(8)]

This is the basic differential equation for the MSD. It
must be solved with the initial conditions

dr($)
g

Note that these initial conditions are not arbitrary, but
are determined by the initial forms (22) and (37) of the
MSD and of D,,.

The differential equation (38) is nonlinear and cannot,
in general, be solved analytically. In the limit A,— oo,
the equation becomes integrable by quadratures, with the
following simple result for the running diffusion
coefficient [use Eq. (17)]:

r()=o, =0. (39)

£=0

where erf(x) is the error function. From Eq. (36) we
derive the magnetic line diffusion coefficient in this limit
172

T B, Ao . 41)

2

DQL

This is a very well known expression of the magnetic
line diffusion coefficient in the quasilinear limit [5,7,12].
It remains a good approximation also for finite A, pro-
vided BA /A <<1. The first nonlinear corrections to the
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quasilinear result can be obtained systematically by a per-
turbation procedure. Introducing the dimensionless
quantities defined in Eq. (32) as well as the dimensionless
MSD g(7)=T(A,7)/A}, the differential equation is
rewritten as

2
481 _pgre—Pr2 1 S 42)
dr* [14+g(m)]

This equation can be solved by a perturbation method,
assuming a®<<1. The calculation is standard (although
the term of order a® requires working out some rather
complicated integrals involving error functions) and leads
to the following dimensionless magnetic line diffusion
coefficient D, =(1,/ AD,,:

172
LI [

5 1—4(V2—1)a?

$M=

4

+4 a 43)

7v§—1ox/§+3+%

The leading term D,, =(m/2)!?a?, when written in di-
mensional form, is, of course, equivalent to Eq. (41). The
first effect of the nonlinearity is a lowering of the diffusion
coefficient.

The opposite limit is very interesting, although it is
physically not very realistic: it is the case Aj— o0, A,
finite. Equation (38) then reduces to

2 A4
dTE) g2 (44)
d¢ [M+T(0)]

Using a standard method, this equation is integrated,
with the following result for the dimensionless diffusion
coefficient:

dg(7)

TEww(T)ZZa

1/2
g(7)

1+g(7) “3)

This is the dimensionless form of the running diffusion
coefficient. Its asymptotic limit is found by letting 7— o
and hence g(7)— o0:

Dy,=a. (46)
The corresponding dimensional form is
D =BA, . 47)

This result for the magnetic line diffusion coefficient in
the extreme percolation limit A — o was previously ob-
tained in Ref. [7] in a semiqualitative way. Here all the
limiting results are obtained as particular cases of the
solution of a unique differential equation (38). The very
conspicuous feature of the result (47) is the linear depen-
dence on B, to be contrasted with the quadratic depen-
dence in the quasilinear limit. This is very much reminis-
cent of the behavior of the particle diffusion coefficient as
a function of the fluctuation intensity 7 of electrostatic
drift waves [34-39]. In that case one sees a similar tran-
sition from a quadratic dependence (for small 7) to a
linear dependence (for large 7): the latter is called the
Bohm-like regime. The numerical solution of the com-
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FIG. 2. Dimensionless magnetic line diffusion coefficient
D,.(a). The full curve was obtained by numerical integration of
Eq. (42). The diffusion coefficient was determined from the lim-
iting value of dg(r)/dr for large values of 7.

plete equation (38), plotted in Fig. 2, clearly shows the
transition from the quadratic to the linear regime.

The Kadomtsev-Pogutse [7] Aj—c0 limit (47),
confirmed here as the corresponding limiting solution of
Eq. (38) is, however, incorrect. Indeed, large values of kll’
and hence of a, are outside the domain of validity of Eq.
(38) itself (not only of its solutions). In particular, the va-
lidity of the Corrsin approximation (26) is only ascer-
tained for B<<1, and hence a <<1. The problem of the
magnetic line diffusion must actually be treated by quite
different methods, taken from percolation theory [15,24],
which will not be discussed further here.

V. RELATIVE DISTANCE
OF NEIGHBORING MAGNETIC FIELD LINES

In the preceding section we considered the diffusive
motion of a single field line. We now consider two mag-
netic field lines x,,(§),x,(&), starting at different posi-
tions at £=0. We introduce the notation Ax (&)
=[Ax(£),Ay(£)] to denote the instantaneous distance
between the two orbits at “time” §:

Axl(§)=xlz(§)—xl1(§) . (48)

The equation of evolution for this quantity is easily de-
rived from Eq. (19) and, for small values of |Ax (¢)],
linearized around x,;(§) [see also Refs. [11,12,14]:

%‘gﬁﬁxuzwxo—bx(x,<§>,§>

=b, x(&)Ax(8)+b, ,(5)Ay(S),
where b,, ,(£) denotes the partial derivatives of the mag-

netic field, evaluated at the instantaneous position x ;(£):

by n ()= =0, (31, £) 49)

ax, X, =x,(0)

Introducing now the matrix B(§)=[b,, ,(£)], we write
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:idzAxl(é‘)=£(§)-Axl(§) . (50)

The matrix B has zero trace (because of the zero-
divergence constraint b, , =0); hence its eigenvalues have
equal absolute values and opposite sign:

Ay _=2+V'b2 +b, b, . (51)

Consequently, one of the two eigenvectors grows ex-
ponentially with § and the other one decreases at the
same rate. This Lyapounov stability analysis, valid for a
given realization of the magnetic field, shows that, at
each point (x,y), there is a tendency toward exponential
separation of the two lines in one direction and of the ex-
ponential approach in another direction. It should be
stressed, however, that this statement only holds locally:
even the linearized equations of motion do not possess
simple exponential solutions of the type exp(A;{), because
the coefficients b, ,({) are not constant, but rather §
dependent. These coefficients determine the local rates
and directions of exponentiation (unstable and stable
manifolds); they vary from one point to its neighbor. As
a result, a small initial circle in the (x,y) plane trans-
forms upon advancing along ¢ into a complicated pattern
with longer and longer boundary and invariant area (see
Isichenko’s “flower” in Ref. [14]).

We now consider the truly statistical problem in which
b is considered as a random field and the equations of
motion (50) must be treated as stochastic differential
equations. The statistical description of the relative evo-
lution of a pair of field lines requires the determination of
(at least) three moments (Ax(&)), (Ay*¢&)), and
(Ax(£)Ay(£)). This problem was treated previously in
Refs. [11,12,14]; we therefore omit the details of the
derivation. A set of three equations for these moments is
derived from Eq. (50); their coefficients involve the La-
grangian correlations of the magnetic field gradients
L% (&) corresponding to the Eulerian ones of Eq. (13).
Generalizing the calculations of Sec. III, these quantities
are evaluated with a Corrsin approximation similar to
Eq. (26). It is then shown that the Eulerian correlations
(13) imply that all the Lagrangian correlations of the field
gradients are expressible in terms of a single scalar func-
tion #(§),

LEO=LPO=1L2(0)
=1L =—L3E)
=—LBEO=HE . (5D

These properties are analogous to the result (28). By the
same arguments as in Sec. III, it is shown that #({) is ex-
pressed in terms of the function .£(&) defined in Eq. (28)
as

2

< M
248

5
|At+2 [fdeie—eLe
(53)

F(E)=P%xp

After some elementary algebra, the equations for the rela-
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tive MSD’s, treated asymptotically for £>>A, (the Mar-
kovian approximation), reduce to the simplified form

d%(m%g))=27{<Ax2<§)>+a7{<Ay2<g)> ,

digmyz(g»=67{<Ax2(§)>+z7f<Ay2<g>>, (54)

;;%mx(gmy(g))=—47{<Ax(§)Ay(g)> ,

where

1 ®
=—= dé¢H . 55
L [ dcH© (55)
The quantity Ly defined by this equation has the di-
mension of a length: it will be called the exponentiation
length for reasons that will presently be clear. The solu-
tion of the corresponding initial value problem (assuming

deterministic initial values) is found by standard
methods:
(Ax2(£)) =1[Ax0)+Ap(0) Jexp 2—L§—
K
1 2 — 2 __L
+3[Ax*(0)—Ay“(0)]exp Le |’
(Ap£)) =L[Ax2(0)+Ap*(0)Jexp 2{—
K
—LAXX0)—Ay2O)]exp |— =5 |, (56)
LK
(Ax(E)Ap(£)) =Ax(0)Ap(0)exp ——LL
K

In the limit of a very large perpendicular correlation
length, the integral in the denominator of Eq. (53) can be
neglected and one finds a Gaussian form for the Lagrang-
ian correlation which, combined with Eq. (55), yields a
very simple form for the exponentiation length L,

172
A A

4Dy 4B,

2

™

Lg , (57)

where Dg is the quasilinear magnetic line diffusion
coefficient (41). Clearly, Ly is the characteristic length
scale of the moments (sz(g)), etc. It can be shown
that the criterion of validity of the Markovian approxi-
mation, and hence of Eqs. (54) and (56), requires the
parallel correlation length A, to be much smaller than the
exponentiation length
172
M L

2 M
I B Iz—<<1 . (58)

L

m
2

This criterion is easily satisfied in realistic situations.
We now see that the two MSD’s (Ax2),(Ay?) have an
exponentially growing and an exponentially decaying
part, both on a scale of order Ly. The cross correlation
(Ax(&)Ay(£)) is decaying in &; the two MSD’s can be
combined as
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(AxHE))+{Ap2E)) =(Ar2(£)) =Ar(0)exp z-Li ,
K

(59)
(Ax2E)) —{ Ap2(£)) =[Ax2(0)— Ap*(0) Jexp —f—
K

This result is extremely interesting. It shows that in
the average picture the distance between the lines grows
exponentially and gyrotropically in all directions. The
possible initial differences Ax(0)7*Ay(0) are progressive-
ly washed out; there is a loss of memory of any initial
privileged direction.

It should be realized that the exponentiation of the
magnetic lines only represents an initial trend of the evo-
lution. Indeed, the solution (59) is based on the linearized
equations (54). Whenever the small initial separation be-
comes sufficiently large, the nonlinear effects come into
play and seriously modify the picture; in particular the
exponential growth is slowed down (presumably to a
diffusive growth, linear in §). This situation is strongly
reminiscent of the clump effect studied in electrostatic
turbulence [34,40]. The nonlinear study of this problem
is left for a forthcoming paper.

Our results will now be compared with those of previ-
ous workers. We first note that there is no intersection
with the work of Krommes, Oberman, and Kleva [11].
These authors used a sheared reference magnetic field,
characterized by a finite shear length L ; their calculation
automatically yields infinite exponentiation lengths when-
ever L,— oo. Isichenko [14] also has a sheared reference
field in his model, but his more careful calculation shows
that the exponentiation lengths remain finite even in the
limit of zero shear. More precisely, he shows that the re-
sult of Ref. [11] can be obtained as a limit when L, << L.

In the opposite limit L;>>Lg, Isichenko’s results
should reduce to ours: actually, they do not. We already
pointed out in Sec. II that his statistical assumptions
about the magnetic fluctuations are inappropriate, as
they are inconsistent with the constraint of zero diver-
gence of the magnetic field. In order to exhibit the conse-
quences of this feature, we define, as in Refs. [11,14], a
vector R =({Ax?),{Ay?),{(AxAy)) and write the
linearized and Markovian equations (54) in the form

<2 R=A4-R, (60)

3 0
1 0 |. (61)
0

This is to be compared with the following matrix ob-
tained by Isichenko (for b, =0 and L; = «0):

4 20
AIsiz—_ 2 4 0 . (62)

The fact that the numerical coefficients are slightly

different in the two cases is not too disturbing. There is,
however, a much more serious qualitative difference. The
eigenvalues of our matrix are the coefficients appearing in
the arguments of the exponentials in Eq. (56):

2 1

Lo L’ eigenvalues of 4 . (63)

— fK"
The corresponding quantities in Ref. [14] are

L, —2—, 0, eigenvalues of A4 . (64)
Ly Lg
Instead of one positive and two negative exponents, Isi-
chenko finds two positive and one vanishing exponent.
There is therefore an indiscriminate growth of the mean
square displacements in all directions, whereas the cross
correlations remain constant. The important features,
and in particular the gyrotropization of the state de-
scribed above, are missed in Ref. [14].

Another interesting consequence of Egs. (56) and (59) is
the existence of a constant of the motion (in the linear-
ized approximation)

FE={[{AXHE)) +(ApHEN) ]
X[(AxHE)) —(ApHE)) ]
X (Ax(E)AY(E))}=F0) . (65)

This feature is clearly a consequence of the vanishing
trace of the matrix 4 or, equivalently, of the fact that its
eigenvalues sum up to zero, Eq. (63). This property could
not have been obtained by Isichenko. All these
differences arise from the fact that he does not take into
account the existence of nondiagonal Eulerian correla-
tions of the field components, which are imposed by the
condition V-b=0.

VI. DECORRELATION OF PARTICLES
FROM FIELD LINES

We now introduce a plasma into the previously de-
scribed magnetic field configuration. We thus go over
from the kinematic (geometric) description to the dynam-
ic study of the motion of charged particles under the ac-
tion of the magnetic field and of their mutual collisions.
In order to make the problem tractable, we assume that
the unperturbed field B, is very strong; the motion of the
particles can then be described in the drift approxima-
tion. Neglecting all finite Larmor radius effects, we as-
similate the position of the particles with the position of
their guiding centers. The latter are supposed to move
along the (perturbed) magnetic field; the perpendicular
drift motions are neglected (the effects of the latter will be
considered in a forthcoming paper). The collisions are
modeled by a random velocity with a component 7, in
the z direction and components 7,,,7,, in the perpendic-
ular direction. As a result, the equations of motion of the
particles are obtained by combining the field line equa-
tions with the collisional velocity

dz, (1)
(B)=b,[x,(2),y,(2),2,(2)] ar

pr +7.,(0), (66)
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dzp(t)
dt

Ay (1=b,[x,(1),3,(0,2,(0)] a0, (67

L =ny1) . (68)

These are the so-called V-Langevin equations. They
were derived and used in many previous works
[7,11,14,18]; a thorough discussion is given in Ref. [27].
In Egs. (66)-(68), [xp(t),yp(t),zp(t)] are the coordinates
of the instantaneous position of a particle (or guiding
center) at time ¢. This point of view is to be distinguished
from the quantities entering Eq. (19). In particular,
[x(£),y(£),£] in the latter equation denotes the coordi-
nates x and y of a geometrical point on a field line,
parametrized by the third spatial coordinate §. In
the present dynamical picture, the latter becomes a
function of time g‘—»zp(t); as a result, x[zp(t),t]
—>xp(t),y[zp(t),t]—>yp(t). Equations (66)—(68) must be
completed by a statistical definition of the random veloci-
ties. We assume that 7,,,7,,,7, have zero average and
are modeled by a Gaussian colored noise, with identical
statistical properties for 7,,,7,,:

(m(om ey =xpvexpl—vle—'|]=R, (e =), (69)
(e (O () = (g, (D7, ()

=xvexp[—v|t—1'[]

=R (lt—1']), (70)
(e (O, (2)) = (n (O (£))

=(n, () (t"))=0. 71

Comparing these results with transport theory [27,28] we
interpret v as the collision frequency of the plasma and
XpX1 as the classical (collisional) diffusion coefficients
parallel or perpendicular, respectively, to the strong mag-
netic field Bge,. In terms of the thermal velocity
Vy=V2T/m (where m is the mass of a particle and T
the temperature of the medium), these transport
coefficients have the following values [27]:

:_V_% X = ——=V2 X1 _
21/’ 1 202 T, X”

2

Yl «<1. 12

X Q

Here Q=eB,/mc is the (unperturbed) Larmor frequency
of the test particle of charge e. It is well known that in a
strong magnetic field, the perpendicular diffusion
coefficient is much smaller than the parallel one.

The V-Langevin equations (66)—(68) describe a triply
stochastic process. The first random process is the sto-
chastic magnetic field, which produces chaos of the field
lines as described in Sec. V, and an asymptotic diffusion
of the latter, as shown in Sec. IV. The parallel collisional
velocity n; produces a diffusion of the particles along the
magnetic field lines and 7, produces a departure from the
field lines. The result of the combination of these three
random factors in the V-Langevin equations leads to a
very difficult problem that has never been solved exactly.
In the present paper we address a specific question: How
can the collisions produce a decorrelation of the particles
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from the magnetic field lines? If such a decorrelation
mechanism exists, the particles can get loose from the
lines to which they were initially tied and diffuse across
the magnetic field much more strongly than predicted by
the purely collisional mechanism (in the absence of mag-
netic fluctuations).

In order to study this problem we introduce the follow-
ing concepts. Consider a particle located at time =0 at
a point (x,(0),,(0),2z,(0)) and let (x,,(£),y,(8))
represent the magnetic field line passing through the posi-
tion of the particle at time zero (briefly, the initial field
line), i.e., x,,(5o)=x,(0) and y,,(§o)=y,(0) for {,=2,(0).
At time t >0, the particle has left the field line; therefore
the perpendicular component of its position can be
represented as

X, (1) =2,,,(2,(1))+Ax, (1), (73)

where x,,,(z,()) is the position where the particle would
be at time ¢ had it followed the initial field line and
Axp 1(¢) is the deviation, at time ¢, of the real particle po-
sition from the fictitious position on the initial field line
(Fig. 3). The equations for the perpendicular components
of the deviation Ax, (z) are obtained from the V-
Langevin equations (66)—(68), which define the trajecto-
ry and Eq. (19) for the field lines:

()= (B Ux, (0,3, (1), 2, (1)
b0 (2, (), 9 (2, (1)),2, (1))}

dz,(1) (D)

d n,(t) .

For |Ax,(t)],|Ap,(t)] <<A,, these equations can be
linearized as

d dz, (1)

EAxp(t)=bx,x(xml(zp(t)),zp(t)) at x, (1)
dz,(1)
+b,,(x,,1(2,(2)),2,(2)) a Ay, (1)
+n,,(1) (74)

—" Xm [ZD“)]
el
R |
e I
7 |
[/ |

Z,(0) Z,(t) z

FIG. 3. Definition of the particle deviation. The full line is a
particle orbit, intersecting at time =0 the magnetic field line
represented by the dash-dotted line.
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and a similar equation for Ay, (z). The equations must be
solved with the initial conditions Ax,(0)=0, Ay,(0)=0,
and z,(0)=0.

These equations are very similar to Eq. (50) for the field
line separation. They can therefore be treated by a simi-
lar method. One first derives equations for the MSD be-
tween particle and initial field line, as well as the cross
correlations, averaged over the ensemble of magnetic
fluctuations (in the present triply stochastic problem the
type of averaging must be specified and introduced as a
subscript in the notations). The equations are treated
with the same approximations as in Sec. V, i.e., the
Corrsin and the Markovian approximations:

dz (t)
%(Axﬁ(tﬁb:% 2 (AxHD),
dz (1)
+6# St (Ap(1)),
t
+2f0d77]u(t)nlx(‘r) , (75)
dz, (t)
%(Aypz(t))b=67{ g (Axp),

dz,(t)
(o),

+2f0‘d¢my(z)my(¢) , (76)

dz, (1)
o (Ax, (DAY, (D),

+ [ dr{ni (1m, (7)
(O (D], 77)

where # = (4L )~ ! was defined in Eq. (55).

The second averaging of these equations over the en-
semble of perpendicular random velocities 7,(¢) is im-
mediate, using Eq. (70). This set of equations is similar to
Egs. (54), up to the source term due to the perpendicular
collisions. The solution of Egs. (75)—(77) is obtained by
standard methods:

<Ax3(t))b,l‘—‘<Ay;(t))b,l
t 3t
—2f0dt1f0 drR (t,—7)
Xexp{8F([z,(t)—z,(2,)]} ,

+2H

%(Axp(t)Ayp(t)>b=-47{

(78)
(Ax,(t)Ay, (1)), =0 .

All these results were obtained in a given realization of
2,(t) [or of m(¢)]. They must finally be averaged over the
latter random quantity. We now put these results togeth-
er in an expression of the absolute MSD of the particle
position:

(ng(t)>b,l,l|=<8xr%1(zp(t)))b,[l+<A'xpz(t))b,l,|l (79)

[with a similar formula for (8y7(¢)}]. The decomposi-
tion (79) is a very specific feature of our method. From
this equation for the MSD we obtain a corresponding
decomposition of the running diffusion coefficient
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D()=13,(8x2(1)), ;=D ()+D?(z) (80)

[where the superscripts (1) and (2) refer to the first and
the second terms of Eq. (79), respectively] and a similar
decomposition for the limiting diffusion coefficient

D= lim D(t)=DV+D? . (81)
The first term was obtained in the theory of magnetic
line diffusion, Eq. (22): it represents the lateral displace-
ment of particles sticking to the field lines and dragged
along by the diffusion of these lines. The second term is
given by Eq. (78): it represents the perpendicular dis-
placement produced by a decorrelation of the particles
from the field lines. Note that the latter term is the only
one containing the perpendicular diffusion coefficient y,
and is proportional to it [see Eq. (70)]. Hence the first
term of Eq. (79) can also be interpreted as the value of the
MSD for yx,=0.
We now perform the average over the parallel velocity
7,(2) explicitly. The following results will be used in this
operation:

(Zp(t)>“=0 ’
(zpz(t))”=2f0td7'R"(T)(t—7')=2%ﬂ¢(vt) ) (82)
Plx)=x—1+e (83)

A. The first term in Eq. (79)

The first term in Eq. (79) is evaluated by using Eq. (22)
in the form
<5x,3,(t>>,,,,=<f0’d;1fj:‘dg_c(g)>n
= [ dk Lok 2=t e TR,
(84)

where z =z, (¢), L({) is the scalar function characterizing
the Lagrangian magnetic field correlations, Eq. (28), and
L(k) is its Fourier transform. The average of the ex-
ponentials is calculated in the second cumulant approxi-
mation and, after some algebra, one obtains

(8x2 (1)), = [ © dg(8x2(£)),P(5,1) (85)

where

2

This function can clearly be interpreted as the probability
density for a particle to be located, at time ¢, at the posi-
tion corresponding to coordinate § on the magnetic line.
Equation (85) thus shows that, in the absence of perpen-
dicular collisions, the cross-field particle displacement is
expressed as the average of the magnetic line displace-
ment, weighted by the distribution function P(¢,t).
Equation (85) yields the following expression for D'V(z),
Eq. (80):
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v ‘172
DWV(t)=g(vt) 771/1("vt)
- Y S
x [ "deLHexp rroavzsrrersll RELL

where p(x)=1—e " *.

For long times v¢ >>1 [such that (z2(¢)) >>A%], the ex-
ponential in the integrand of Eq. (87) can be approximat-
ed by 1 [because ¢(vt)~vt] and the asymptotic form of
the function D'V(¢) is
172

DW(£)~ [ acL@ (88)

X
wt

or, using the definition of the magnetic line diffusion
coefficient, Eq. (37),

D“)(t)=‘/—11—7_~\/—)?"Dm—‘/l—?, vi>>1, x,=0. (89)

Thus the running diffusion coefficient is proportional to
the magnetic line diffusion coefficient and to the square
root of the parallel collision diffusion coefficient.

The most important conclusion to be drawn from Eq.
(89) is the following. For all values of the perpendicular
correlation length (and not only for A, — o), whenever
X1 =0 and when the perpendicular drift motions can be
neglected, the asymptotic behavior of the particles is
subdiffusive, with D"(¢)~¢ ~'/2 and D'V=0.

It should be stressed, however, that this conclusion is
only valid for collisional plasmas, when v+<0. The col-
lisionless limit of Eq. (87) is rather singular. When v—0
(for fixed 1), we set, in Eq. (87), @(vt)~wvt and
PY(vt)~1(vt)% use Eq. (72) Xv= V2 /2, and consider, for
definiteness, the approximation (31) for .L(§):

_ o 1 1
DM()=m"1?2y B [ “diexp |—= |5 2
6 B [ “dgexp |~ vty |6
_ 1
=271y g2l —————— |, v=0. (90)
b A2+ (V)72

This running diffusion coefficient tends to a nonzero limit
ast— o0,

Dy’ =27V NV =7"""DoVy, v=0. D

Here D, is the magnetic line diffusion coefficient (in the
quasilinear approximation) defined in Eq. (41). Thus, in
the strictly collisionless limit, the first term of Eq. (79)
behaves diffusively. This result will be discussed further
below.

B. The second term in Eq. (79)

We now consider the 7, averaging of the second term
in Eq. (79), i.e., the term describing the decorrelation
produced by the perpendicular collisional diffusion
coefficient, Eq. (78). The average of the exponential is
evaluated in the second cumulant approximation

4855

4
<exp [i[zp(t)—zp(tl)] }>”=exp [Lft $vt—1,)] ] .

K
(92)
Here the following dimensionless parameter appears:
2
4y L
= __2 =p | == | 93)

where L. =Vr/v is the collisional mean free path.
Clearly, a small value of u corresponds to a strongly col-
lisional regime. Using Egs. (92) and (70), Eq. (78) is now
written in the form

<Axp2(t)>b,l,|\=2leotdtl‘p[V(t_tl )lexp[uy(ve,)] .
(94)

This expression will be evaluated in the two limiting cases
of strong and weak collisionality.

1. The limit of strong collisionality
For large t we approximate (vt )~ vt and obtain

2X1 | M
2 —
(Ax} D))y, = e -

1+p > (95)

which, in the strongly collisional regime u << 1 reduces to

2
<Ax,,2(t)>,,,l,,,=fview : 96)

We thus find a typical exponential departure of the parti-
cle trajectory from the initial field line ~exp(uvt). The
growth rate is related to the exponentiation length of the
field line Lg, defined in Eq. (55): it introduces a positive
temporal Lyapounov exponent T identified by the rela-
tion exp(uvt)=exp(2t/Tg). In the limit of a large A it
is approximated by using Egs. (57) and (72):
2 viAL
vTg P SaBIIVE 97)

A very important feature appearing in Eq. (96) is that
the trajectory-field line decorrelation can only occur if
X,70. This role of the perpendicular collisional diffusion
was already stressed in Ref. [5]; a particularly clear quali-
tative discussion is found in Ref. [14]. We now note that
the exponential separation cannot go on forever; the re-
sult (96), based on a linearized equation, is valid only
when (AxX(1));, , SA]. Beyond that limit we may ex-
pect a diffusion process of the particles, independently of
the field line. The situation is very much reminiscent of
the ‘“clump” problem of electrostatic drift wave tur-
bulence [34,39]. We intend to return later with a deeper
study of the nonlinear problem. Meanwhile, a semiquan-
titative estimate can be obtained as follows. The decorre-
lation process described here determines an effective ran-
dom walk with a length step A;. The diffusion coefficient
can then be evaluated as D'?=A2/27,, where the time
step 7,4, called the decorrelation time, is the time interval
during which (Ax2(1)), | grows from O to A3. The total
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diffusion coefficient from Eq. (81) is obtained by adding to
D? the contribution D'V, As the latter represents a

subdiffusive process, D®M=0. The total diffusion
coefficient D is thus
2x A2
D=D?= Xg\l 5 . (98)
Liml2 |t | 2L
Ly | xi
This is practically identical to the celebrated

Rechester-Rosenbluth formula for the effective diffusion
coefficient in the quasilinear limit (BA /A, <<1). Indeed,
in the form given in Eq. (23) of Ref. [14], the latter
coefficient is

Duw = X Dm _ X||7"f
RR 2 2 ’
A A
Lgln —L; ——;2 4L,%ln[ —~L; —2

(99)

where we made use of Eq. (57) for Ly and Eq. (41) for
D,,=Dgq.

Summarizing our approximations, the domain of valid-
ity for the diffusion coefficient (98) can be determined.
The parallel motion was considered to be diffusive: it
defines a characteristic length in the z direction along
which the decorrelation is achieved; this length is of the
order L}~ (zpz(rd )Y =2x,74- L, must be larger than the
Kolmogorov length. When this condition is satisfied, the
small initial cross-field displacement is significantly
amplified. The characteristic lengths are ordered as fol-
lows in this strongly collisional regime:

L <<Lg <Ly, A<Lg . (100)

The second inequality takes into account the criterion
(58) for the validity of the Markovian approximation.
Moreover, Eq. (95) shows that the perpendicular col-
lisional diffusivity ), contributes linearly to the particle-
field line decorrelation. This implies an additional condi-
tion for ensuring that the decorrelation mechanism due
to the chaotic field prevails over the collisional cross-field
displacement. This condition can be expressed in terms
of the “Kadomtsev-Pogutse characteristic length” Lyp

Ld<LKPE}‘1\/Xu/X1 . (101)

Thus the conditions (100) and (101) for which the
diffusion coefficient (98) was evaluated define indeed the
strongly collisional validity domain for the Rechester-
Rosenbluth regime.

2. The limit of weak collisionality

We can also consider the weakly collisional limit
p>>1, in which the particle-field line decorrelation is
produced during the ballistic regime of the parallel
motion: this implies 7, <v~!. During the finite time in-
terval t<7;, we approximate ¢@(vt)=vt and
¥(vt)~1(vt)? and obtain (asymptotically) from Eq. (94)
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) v2 2
<Axpz(t)>b»l;||=2lefotdt1(t—t])e(l/Zu ]
2x, 1 n
- exp | - (vt)? (102)
v pvt)? P15

Thus the mean square particle-field line separation grows
like the exponential of #2. (A similar behavior was found
in Ref. [34] for electrostatic drift wave turbulence.) The
decorrelation time is determined from the equation
(Ax2(74)) =A%, which is of transcendental type. We
found that, for a rather wide range of parameters, the
solution of this equation is approximated by

1/2
4L%p

2 In 5
Lk

u

172

vrg= , (103)

which yields the following estimate for the random walk
diffusion coefficient in the weakly collisional regime:

DO — 2D, Vr _ 2D, Vy (104)
weak 4L 2 }\'2 .
In!/? —————;(P In'/? 2,u-——2£-
Li PL
The domain of validity of this result is
Ay<Lg <Ly <<Ly,, Ly<Lgp, (105)

where the characteristic length for particle decorrelation
along the magnetic field L, is of the order L, = V,7,.

The total diffusion coefficient is obtained by adding the
two terms in Eq. (81). We now recall that the contribu-
tion D, Eq. (91), of the first term is subdiffusive in all
collisional regimes, except in the strictly collisionless case
v=0 (u=w), Eq. (91). We thus obtain the following
form for the weakly collisional diffusion coefficient:

ZD’"V)TLZ , V<0
In!”2 2#_1
Dweak= P%
1 (106)
~=DnVr, v=0

The diffusion coefficient (106) was not previously de-
rived. It describes, like the Rechester-Rosenbluth
coefficient (98), the amplification of a small initial cross-
field displacement in the chaotic field, but applies to
weakly collisional plasmas. The coefficient of the first
line (D'?) is a function of the collision frequency. In the
limit v—O0, ie., u— o, this term decreases slowly to
zero. When v is exactly zero, the particles can no longer
decorrelate from the field lines (in the present model) and
D, =0. But in the same case, the term D‘! becomes
suddenly diffusive: the particles that stick to the field
lines are dragged in the perpendicular direction by the
diffusion of the lines. As a result, there appears a finite,
well known “collisionless diffusion coefficient” (91) [40].
[It may be noted that in Refs. [11,14,21,40] the
coefficient is 2 instead of 7~ !/2. The former coefficient is
obtained from the qualitative argument (8&x2%(¢))
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=2D,,z(t)=2D,, Vrt. Instead of injecting the approxi-
mate value V't into an asymptotic approximation, we
calculate here in a single stroke the exact asymptotic lim-
it of Eq. (87), for a given spectrum (11): this is the origin
of the slightly different numerical coefficient.]

The collisionless limit appears to be rather singular. It
was already mentioned in earlier work (see, in particular,
the critique in Ref. [11] and the discussion in Sec. VIII
and Fig. 1 of Ref. [27]) that the collisionless ‘“limit” is
not a well-defined concept. We believe that our present
result clarifies this question. Equation (106) exhibits the
quite distinct physical role of the two terms contributing
to the diffusion coefficient. Note that the two running
diffusion coefficients Eq. (80) are finite quantities for all
times and for all collision frequencies. But for a strictly
zero collisionality, the coefficient DM(y) presents a sud-
den diffusive behavior and produces, by itself, a nonzero
diffusion coefficient. The coefficient D{’ cannot be at-
tained by a continuous limiting procedure. On the other
hand, the strictly collisionless case is physically fictitious.
Therefore the “collisionless diffusion coefficient” D{'’ can
never be reached and cannot represent an approximation
acceptable for weakly collisional systems, as appears
clearly from Fig. 1 of Ref. [27].

It should be noted, on the other hand, that in the re-
gime of very weak collisionality, the inefficient decorre-
lating action of the collisions will be superseded by other
decorrelating mechanisms that are neglected in the
present model, such as the perpendicular drift motions
caused by magnetic field gradients and curvature. When
these factors are considered, the transition to the col-
lisionless limit is no longer so sudden. These effects will
be studied in a forthcoming work.

Laval [21] obtained an expression for the diffusion
coefficient by a very different method, using a stochastic
dynamics modeled by a discrete map, related to the
sawtooth map. His results, which depend on his specific
model, can hardly be compared to ours. In this particu-
lar model he obtains, in the strongly collisional limit, a
result (his Eq. 42) very similar (but not identical) to the
Rechester-Rosenbluth formula. His general result
reduces, in the weakly collisionless limit, to 2D,, V. But
we cannot see in his formula the distinct behavior of the
two terms of Eq. (79), which is so peculiar in our result.
In view of the discussion presented above, we believe that
Laval’s ‘“continuous limit” towards a collisionless
diffusion coefficient is open to question.

VII. CONCLUSIONS

Our first purpose in the present paper was the precise
definition of the main concepts entering the statistical
representation of the fluctuating magnetic field. Given
that the magnetic field is modeled as a Gaussian process,
all its moments are determined by the two-point correla-
tion functions of the magnetic field. One can distinguish
two types of such correlation functions, which pose very
different problems.

The Eulerian correlations are simple objects, entirely
determined by the kinematics, or geometry of the situa-
tion. One must, however, be careful in taking account of
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all constraints, in particular the zero-divergence con-
straint [19]. We have given here detailed formulas for
these objects. It turns out that the explicit expressions
given by some authors for these quantities are incorrect
because they are inconsistent with the geometrical con-
straints.

The Lagrangian correlations, by contrast, are very
complex objects, the determination of which requires the
solution of the equations of motion. One must therefore
accept reasonable approximations such as the Corrsin ap-
proximation used here. It is shown that within this
framework the Lagrangian correlations can be reduced to
a single scalar function, which is determined by an in-
tegral equation. The latter can easily be solved numeri-
cally. This treatment of the Lagrangian correlations ap-
pears to be different.

The results obtained for the Lagrangian correlation im-
mediately lead to the derivation of a second-order non-
linear differential equation for the mean square deviation
of a (geometrical) point running along a magnetic field
line. The study of diffusion problems through the solu-
tion of a differential equation is a rather new methodolo-
gy (the only other similar but incomplete treatment, to
the best of our knowledge, appears in an unpublished re-
port of Rax and White [41]). It leads, in particular, to an
analytic expression of the diffusion coefficient, both in the
quasilinear limit and in the opposite, percolation limit.
In between, the numerical solution of the equation
presents no problems. It exhibits a transition from a re-
gime proportional to a? to one proportional to @: this is
very reminiscent of the transition from quasilinear to
Bohm-like regimes in electrostatic drift wave turbulence.
It is shown, however, that the large-a limit (i.e., the
Bohm-like form) is actually illusory.

The two problems treated in Secs. V and VI have a
common feature. In both cases there appears an ex-
ponential, and thus chaotic, separation of two initially
very close curves. The difference is in the nature of these
curves.

In Sec. V we treated the purely geometrical problem of
separation of two magnetic field lines in a spatially fluc-
tuating magnetic field. The latter is described by a
Gaussian process with spatial correlation scales A (A,) in
the parallel (perpendicular) direction, respectively. We
stressed the different picture obtained in this process, ac-
cording to whether one looks at the figure obtained in a
single realization or in the average over an ensemble of
realizations. In the former case an initial elliptic flux
tube tends toward a complex shape due to stretching and
narrowing in different directions as the points advance
along the lines [14]. In the average picture, there is, on
the contrary, a tendency toward gyrotropization; the el-
lipse tends toward a circle and any initial anisotropy
disappears in the long range.

Another important aspect exhibited here is the impor-
tance of correctly taking into account the constraint of
zero divergence of the magnetic field in assessing the
form of the magnetic field correlations. Surprisingly, this
aspect was not fully considered in earlier work [14]. The
consequences are not only minor changes in the numeri-
cal factors in the expression of the exponentiation
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lengths: the signs of the latter are changed; this leads to
a completely different picture of the evolution.

The problem treated in Sec. VI is a truly dynamical
one, in which the evolution in time is considered. We
study here the exponential separation of a particle from
the magnetic field line to which it was initially tied. This
problem led us to the evaluation of an anomalous perpen-
dicular diffusion coefficient. For a strongly collisional
plasma, this coefficient reproduces the Rechester-
Rosenbluth diffusion coefficient. We were also able to
treat the weakly collisional limit, thus obtaining an alter-
native form of the anomalous diffusion coefficient, valid
in this domain. The detailed discussion of the strictly
collisionless case contributes toward the clarification of
this strange and controversial problem.

It may be stressed here that the Rechester-Rosenbluth
coefficient was never before obtained by a complete
mathematical solution of the problem, but rather was
based on semi-intuitive arguments. The latter (especially
in Isichenko’s version [14]) were rather convincing and
picturesque: the particle was described as traveling a
long way along the field lines of an initial flux tube until it
reaches a region where the exponential narrowing of the
tube (along the stable manifold) is so strong that the small
collisional diffusion is sufficient for making it leave the
tube.

Our own treatment is, from the start, more quantita-
tive: it involves the solution of the basic equation of evo-
lution of the problem. The latter is, however, approxi-
mated by its linearized version, which is valid for times
shorter than the decorrelation time 7,. It is during this
initial phase that we find the exponential separation. Up
to this point our treatment is purely deductive. The final
result, rather than being deduced mathematically, results
from the assumption of a final diffusive phase. The full
nonlinear treatment of the equation is short-circuited by
introducing the picture of a random walk of step size A,.
Calculating the diffusion coefficient associated with this
random walk, we attain the Rechester-Rosenbluth result
(in the strongly collisional domain).

In conclusion, it is believed that our treatment of the
anomalous transport across the magnetic field, due to
magnetic fluctuations, represents a relevant, though in-
complete, step toward a theory based on first principles.
We continue the work on the next (nonlinear) step and
expect to return to this problem in forthcoming papers.
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APPENDIX: THE TENSOR
OF MEAN SQUARE DISPLACEMENTS

We define the following tensor of mean square dis-
placements generalizing Eq. (22):

T, (&) =(8x,,(£)8x,(£))
= [fdt [ fdaL (&)

=2 [4ag =L € (a1
where we used the stationarity and the symmetry of the
Lagrangian correlation tensor .L,,, (§), but assumed noth-
ing about its specific form. Double differentiation with
respect to § yields

d’T (&)

e =2L,,,(5)

=2 [ dk,dk,B,,, (k,, k) )e "1

Xexp[ — 1k, kT (5)] . (A2)

We thus obtain a set of three coupled equations for the
components of the MSD tensor. The wave-vector in-
tegrations are easily performed. Using the dimensionless
quantities defined in Eq. (32) and the dimensionless tensor
Emn(T)=AL’T (A7), we obtain

d_zg (r)= 2a e_‘rl’/2
dr”™ T ([ ge (D] 1+g,,(1)] g2 (1}
X[8pmn t8&mn(T)], (A3)
with the initial conditions derived from Eq. (A1):
dgmn
&mn(0)=—" =0. (A4)
dr 7=0

We note that the equations for g,, and g, are homogene-
ous; hence the initial condition (A4) implies

8xy(T)=8,(7)=0, 7>0. (AS5)

Next we note that the combination [g,,(7)—g,,(7)] also
obeys a homogeneous equation; hence

8xx(T)=g,,(T)=g(7), 7>0. (A6)

We thus proved that the MSD tensor is proportional to
the unit tensor

mn(T)=8(7)8,,, . (A7)

It is easily seen from Eq. (A1) that Eq. (A7) induces the
same property for the Lagrangian correlation
L (E)=L(£)S,,, and thus we obtained here a proof of
Eq. (28).
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